
Renewable Hydrogen for the Pacific

Lecture 3: Hydrogen Safety and Economics



Hydrogen Safety and Economics

• This lecture will cover:

• Hazards associated with gaseous and 
liquefied hydrogen

• Safety protocols for hydrogen production, 
storage, and transportation

• An introduction to hydrogen economics

2



Hydrogen Safety



Hydrogen Properties: Comparison
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The Hindenburg Disaster

• The Hindenburg airship caught fire and was 
destroyed on May 6th 1937, causing 35 fatalities 
of the 97 on board

• The most accepted theory is that static electricity 
ignited both the canvas (painted in an incendiary 
mixture) and leaking hydrogen, eventually 
reaching the hydrogen stores

• Public confidence in airships (and hydrogen) was 
shattered
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Other Incidents

• Many other hydrogen-related incidents have 
occurred:

➢ 1948: Hydrogen explosion at synthetic liquid fuels 
laboratory

➢ 2008: Fatal accident due to bacterial hydrogen 
production in atmospheric storage tank

➢ 2011: Hydrogen explosion and iron dust flash fires 
in powdered metals plant

➢ 2011: Fukushima Daiichi nuclear disaster 
hydrogen explosions

➢ 2020: Hydrogen tanker crash and explosion
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Common Causes of Hydrogen-Related 
Incidents

• Equipment failure

• Human factors/errors

• Design errors, such as lack of leak detection, 
insufficient purging, incompatible materials etc.

• Insufficient maintenance

• Flaws in/failure to follow training including 
operating procedures

• Poor management of change

• Insufficient storage/monitoring protocol

• Flammable mixtures in confined space

• Collisions
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Hydrogen Leakage

• Molecular hydrogen is the smallest and lightest of 
all gases

• It has a very high tendency to leak, and a fast 
escape rate

• Metals or alloys exposed to hydrogen can degrade 
or crack, causing hydrogen leakage

• This is known as hydrogen embrittlement or 
hydrogen attack
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Hydrogen Leakage
• Odourants are added to natural gas to assist in detecting 

leaks

• Natural gas for public gas supplies typically contains 5-10 
mg of mercaptans, alkyl sulfides or cyclic sulfides per cubic 
meter of gas

• However, sulfur acts as a poison for the noble metal 
catalysts used in hydrogen fuel cells. Removal of the 
odorant would add significant expense

• Odorants also cause issues with hydrogen storage. For 
example:

• Odorants will condense prior to condensation of hydrogen in 
cryogenic hydrogen storage

• Odorants may strongly adsorb and block adsorption sites in 
metal hydrides and adsorbent-based storage

9



Hydrogen Leakage
• Alternative detection includes:

• Hydrogen detection devices are costly, cumbersome, 
and require constant calibration

• Devices can have:

➢ Detection sensitivity of +/- 0.25% by volume of H2 in 
air

➢ Response time of <1 second at 1% H2 in air

• Non sulfur-based odorants, such as ammonia or 
ethyl isobutyrate. Fuel cell performance degradation 
is still an issue with these alternatives
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Hydrogen Gas Detection Technologies
• Pellistor (or catalytic bead)

• Use of a catalyst that causes flammable gas within the sensor 
to ignite at a much lower temperature than usual. Typically 
used as a general “catch-all” technology for flammable gas 
detection

• Electrochemical
• Hydrogen is reacted with an electrolyte, producing a current, 

allows for much more sensitive hydrogen gas detection 
compared to pellistor sensors (0-1000 ppm)

• Semiconductor
• Typically respond to a wide range of other gases and vapours.

• Thermal conductivity
• Low sensitivity and selectivity render them poor for hydrogen 

detection applications

• Infrared
• Unable to detect hydrogen since diatomic molecules like 

hydrogen don’t absorb infrared radiation
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Pellistor detector



Hydrogen Flammability

• Hydrogen leakage is an issue due to the extreme 
flammability of hydrogen

• Hydrogen has a very wide flammability range

• From 4% to 74% in air, even more in atmosphere 
rich in oxygen or chlorine

• Hydrogen has a very low ignition energy

• Hydrogen burns with a pale blue flame, that is 
nearly invisible in daylight. Thermal and optical 
sensors should be used

• The risk of fire and explosion is therefore very 
high in some applications
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Reaction with Chlorine

• Hydrogen reacts spontaneously with chlorine:

H2 + Cl2 → 2HCl

• The reaction is slow in the absence of light but 
explosive when light or heat are present

• Hydrogen chloride is a colourless gas that forms 
hydrochloric acid upon contact with atmospheric 
humidity
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Accidental Hydrogen Production

• Hydrogen may be accidentally produced through several 
pathways, resulting in documented industry accidents

• Via corrosion of steel:

➢ Steel is attacked by weak acids, releasing hydrogen

Fe + 2H+ → Fe2
+ + H2

➢ Steel is especially sensitive to pitting corrosion 
in the presence of aqueous solutions charged with chlorine, 
bromine, or hypochlorite ions

• Reactions of water or acids with metals

➢ Alkaline metals (Li, Na, K etc.) react rather violently with 
water and generate hydrogen

2Na + 2H2O → 2NaOH + H2

• Formation of water gas

➢ Water gas (H2 and CO), is formed when carbonaceous 
materials at very high temperatures (1000°C) come into 
contact with water
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Other Hazards
• Gaseous Hydrogen

➢ No odour or taste, making leaks difficult to 
detect

➢ Non-toxic but can be an asphyxiant if it dilutes 
or displaces air

• Liquid Hydrogen

➢ Low temperature, causing damage to delicate 
tissue

➢ Loss of hydrogen to boil-off, drastically 
increasing pressure within the vessel

➢ Causes the condensation of other gases, e.g. 
causing solidified air to plug pipes and orifices 
and jam valves
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Advantageous Properties of Hydrogen
• Hydrogen exhibits several safety-related 

advantages compared to conventional fuels:

➢ Hydrogen is non-toxic

➢ Combustion of hydrogen produces only water, 
compared to carbon monoxide released through 
incomplete combustion of carbon-based fuels

➢ The low density of hydrogen (14 times lighter than 
air and 57 times lighter than gasoline vapour) 
causes it to rapidly dissipate in air if leaked
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Why is Hydrogen Safety Important?

• Hydrogen is intrinsically hazardous

• As hydrogen use becomes more widespread in 
industry and the community, management is critical 
to ensure safety during:

➢ Production

➢ Storage

➢ Handling and transport

➢ End use

• Therefore, safety rules, regulations, and standards 
are required to prevent dangerous incidents from 
occurring
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A Typical Compressed Hydrogen Storage 
Tank
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Existing Safety Controls for Compressed 
Hydrogen
• Type I:

➢ Composed of metal

➢ Cheap but low maximum pressures

• Type II:

➢ Metallic liner with a composite fiber and resin overwrap

➢ Improved mechanical strength but high cost

• Type III:

➢ Carbon fiber composite pressure vessel with a metal liner

➢ Improved mechanical strength but high cost

• Type IV:

➢ Carbon fiber composite pressure vessel with a polymer 
liner

➢ Reduced risk of hydrogen embrittlement at a higher cost
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Existing Safety Controls for Compressed 
Hydrogen

• Metals used are generally aluminium or steel

• Polymers used are generally high-density 
polyethylene or polyamide

• Carbon fibre is commonly used
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A Type IV tank produced by Quantum 
Technologies
• Features:

➢ An impact-resistant foam dome

➢ An impact resistant outer shell, which is bullet-
proof and provides the tank with cut/abrasion 
resistance

➢ A carbon fibre reinforced plastic (CFRP) shell

➢ A polymeric liner

➢ Pressure and temperature sensors

➢ Pressure relief device

21



Pressure Relief Devices

• PRDs are the main safety feature for compressed 
hydrogen storage

• A PRD protects against a failure of a storage vessel by 
releasing some or the entire tank content in the event 
of high temperatures, high pressures, or both

• Thermally-activated PRDs release hydrogen from a 
high-pressure storage container before its walls are 
weakened by high temperatures
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Indoor Storage - Safety Considerations

Safety considerations for indoor storage or use of bulk gaseous 
hydrogen include:

➢ Buildings shall be constructed of non-combustible materials.

➢ Hydrogen sensors shall be installed at ceiling level near 
ventilation exhaust.

➢ Install automatic shutoff that activates if a leak or fire is 
detected in the facility that is being supplied with hydrogen.

➢ Avoid ignition sources in storage areas.

➢ Classified electrical equipment shall be in close proximity to 
storage systems.

➢ Gaseous hydrogen system components shall be electrically 
bonded and grounded.
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Reference: https://h2tools.org/sites/default/files/IntroToH2FCandSafetyConsiderations_Sept2018.pdf

https://h2tools.org/sites/default/files/IntroToH2FCandSafetyConsiderations_Sept2018.pdf


Outdoor Storage - Safety Considerations

• Hydrogen cylinders and storage tanks should be stored outside at a 
safe distance from structures, ventilation intakes, and vehicle routes

• Separation distance requirements based on quantity of hydrogen

• A bulk hydrogen compressed gas system has a capacity of more 
than 5,000 scf and consists of:

➢ storage containers

➢ pressure regulators

➢ pressure relief devices

➢ compressors

➢ manifolds and piping
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Reference: https://h2tools.org/sites/default/files/IntroToH2FCandSafetyConsiderations_Sept2018.pdf
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Other Safety Controls for Hydrogen
• Storage of hydrogen must take into consideration location and 

volume of hydrogen, with the preference to have the system 
outdoors to allow for ventilation if required

• Controls are further detailed in existing safety Standards and 
include:
➢ Material selection and design

➢ Administrative e.g., standard operating procedures, risk assessments, 
training, emergency procedures

➢ Ignition source control e.g., electrical installation, explosion proof 
equipment, electrical grounding, lightning protection, prohibit welding 
etc.

➢ Ventilation

➢ Exclusion zones

➢ Hydrogen venting and flare system

➢ Labelling, barricades and access control

➢ Instrumentation for monitoring and alarming e.g., hydrogen leak 
detection, fire detection

➢ Testing and auditing

➢ Fire protection e.g., automatic/manual shutdown, deluge or sprinkler 
systems, etc.
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Australian Standards for Hydrogen

• Need uniform and comprehensive legislation across 
all levels of Government

• Australian Standards managed by the ME-093 
Hydrogen Technologies committee

• Adopted the ISO standards for hydrogen to assist 
with safe and regulated use of hydrogen within 
Australia

• Need to address the following key areas:

➢ Safety

➢ Environment

➢ Trade

➢ Education
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Australian Standards for Hydrogen

• Five working groups within the ME-093 
Technical Committee 

1. Production, Handling and Storage

2. Pipeline and Gas Distribution Networks

3. End Use Applications

4. Fuel Cell Applications

5. Mobility Applications
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Examples of Current Standards

• AS 16110.1:2020, Hydrogen generators using fuel processing technologies

• AS ISO 14687:2020, Hydrogen fuel quality – Product specification

• AS 22734:2020, Hydrogen generators using water electrolysis – Industrial, commercial, and 
residential applications 

• SA TS 19883:2020, Safety of pressure swing adsorption systems for hydrogen separation and 
purification

• AS ISO 16111:2020, Transportable gas storage devices – Hydrogen absorbed in reversible metal 
hydride

• AS ISO 19881:2020, Gaseous hydrogen – Land vehicle fuel containers

• AS 19880:2020, Gaseous hydrogen – Fuelling stations

• AS 26142:2020 Hydrogen detection apparatus – stationary applications
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Codes and Standards for FCEVs
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Reference: Air Liquide USA



Other Relevant Standards

• Hydrogen can be store in alternate chemicals 
(such as ammonia, methane, and methanol)

• Standards exist for these chemicals:

➢ AS 1940:2017 The storage and handling of flammable and 
combustible liquids

➢ AS/NZS 2022:2003 Anhydrous ammonia - Storage and 
handling

➢ AS/NZS 60079 Equipment for Explosive Atmospheres

➢ See: https://www.standards.org.au/
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https://www.standards.org.au/


Future Regulations and Challenges

• Regulators still need to utilise standards as law

• Further development of technical standards in each of 
the five focus areas

• Hydrogen technology is an evolving field, new methods 
of generation, application and storage are rapidly 
emerging

• Need to develop and maintain relevant standards which 
provide clear guidance in its safe use and to ensure its 
benefits are

• Committees must be proactive to match with rate of 
growth and allow fast-tracked application of hydrogen 
within Australia
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Hydrogen Economics



Hydrogen Economics - 101 
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End Goal: Hydrogen must be viable with the end-use sectors and yield benefits



Hydrogen Economics - 101 
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End Goal: Economically H2 needs to achieve certain cost barriers to become economically viable

Reference: Platts Hydrogen Price Wall

H2 Industry

▪ E.g., for the H2 industry a standard cost barrier is 

set by fossil-based hydrogen generation

▪ Creating a race to US$1.5 (or A$2) per kg H2 

Cost Disparity

https://www.spglobal.com/commaodityinsights/PlattsContent/_assets/_files/en/specialreports/energy-transition/platts-hydrogen-price-wall/index.html


Hydrogen Economics - 101 
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Importance of A$2/kg

Reference: National Hydrogen Roadmap, CSIRO

Additional Reading Material on H2 Costs across different sectors in Australia: Advisian Australian Hydrogen Market Study

At a cost value of <A$2/kg, 

Hydrogen would become viable 

for large-scale industry offtake 

and export 

https://www.csiro.au/en/work-with-us/services/consultancy-strategic-advice-services/csiro-futures/energy-and-resources/national-hydrogen-roadmap
https://www.cefc.com.au/media/nhnhwlxu/australian-hydrogen-market-study.pdf


Hydrogen Economics - 101 
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Reference: https://www.irena.org/publications/2022/Jul/Global-Hydrogen-Trade-Outlook 

The economics is not so 

straightforward

It’s like an iceberg – but hopefully, one that does not sink 

the H2 Ship

https://www.irena.org/publications/2022/Jul/Global-Hydrogen-Trade-Outlook


Levelised Cost of Hydrogen
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Levelised Cost 

of Product

(A$/kg)

= 

Net Present Value of 

Investment

Net Present Value of Lifetime 

Production

The Levelised Cost of Product:  Represents the average revenue per unit of product that would have to be 

generated that would be required to recover the investment cost into constructing and operating the 

Power to X facility, an assumed financial life and duty cycle.    



Levelised Cost of Hydrogen
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Just like you pay a unit price for 

electricity.

Hydrogen users will pay a unit price 

per kg/MWh of H2 that will cover the 

producer’s costs

Image Courtesy of US NREL: NREL Video on LCOE

https://www.youtube.com/watch?app=desktop&v=F2DdCyW73VA&ab_channel=NRELLearning


Levelised Cost of Hydrogen
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Benchmarking Offtake Cost Thresholds Predicting Future Hydrogen Costs



Levelised Cost of Hydrogen
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What Makes Up A Levelised Cost of Hydrogen?

Product

Levelised Cost of 

Product

Capital Costs + Feedstock Costs + 

Maintenance Costs

Hydrogen production from project mass 

and energy balance



Levelised Cost of Hydrogen
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What Costs are Involved?

➢ Stage 1: Cradle – Project envisioned, Prefeasibility makes sense and offtake 

agreement in place

➢ Stage 2: H2 Production and Distribution – Investment into development of 

facility/Operations kick off – supply chain established

➢ Stage 3: H2 End Use – H2 reaches end user and return on investment begins

➢ Stage 4: End of Life – The project comes to an end and the facility is 

decommissioned with equipment and material salvaged for reuse.
It’s all about the money!



Hydrogen Economics 
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Upstream Generation Storage Transport End Use End of Life

Stage 1- 

Cradle

Stage 2-

 H2 Production and Distribution
Stage 3-

 End Use

Stage 4-

 End of Life

─ Equipment Purchase

─ Financing Costs

─ Approvals and Land 

Acquisition

─ Operating Costs: Feedstock and energy bills, operational costs 

(maintenance and overheads), insurance, taxes, interest etc.

─ Cost of Distribution: Operating cost of storage and distribution

─ Cost of Hydrogen Use

(End Use Equipment 

capital and operating 

costs)

─ Decommissioning: 

Equipment uninstalled 

and land 

rehabilitation

How are the costs distributed ?
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Capital Cost Assessment

= Total Capital Costs

Direct Cost

+ Indirect Cost

+ Contingencies

Hydrogen Economics
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Operating Cost Assessment

= Total Operating Costs

Feedstock Costs

+ Operation Costs

+ Maintenance Costs

+ Overheads

Hydrogen Economics
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Distribution Costs

(Storage + Transport)

Hydrogen Economics

The cost varies based on the  transport medium
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Hydrogen Economics
Cash Flow Statement

Cash Flow Statement Functions

▪ Tracking of Cash Flows

▪ Important economic parameters

(Profit, Revenue Statement, 

Breakeven, Net Present Value 

etc.)



End Goal: Prefeasibility Study

Pre-feasibility studies involve a design concept of the project is developed 

and a preliminary cost analysis is conducted.

▪ Tools: 

✓ Technical Analysis: Resource Mapping, Mass/Energy Balance

✓ Business Case: Conduct NPV, IRR etc = Economic Attractiveness

✓ Sensitivity Analysis: How flexible the economics are = Robustness of Business Case

✓ Risk Analysis: SWOT – Analysis = Determine Opportunity Costs and Project Risks

✓ Environmental and Social Analysis: Will the Society and Environment be affected?
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Further Reading:
https://ens.dk/sites/ens.dk/files/Glob

alcooperation/prefeasibility_study_g

uidelines_final.pdf 

Hydrogen Economics

https://ens.dk/sites/ens.dk/files/Globalcooperation/prefeasibility_study_guidelines_final.pdf
https://ens.dk/sites/ens.dk/files/Globalcooperation/prefeasibility_study_guidelines_final.pdf
https://ens.dk/sites/ens.dk/files/Globalcooperation/prefeasibility_study_guidelines_final.pdf


▪ Front End Engineering Design – FEED

▪ What is included in FEED:

✓ Detailed Project Design and Cost Estimates based on 

quotes from vendors and EPC contractors

✓ Strategies to procure equipment and construct the facility

✓ Workflow and project plan
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Hydrogen Economics

End Goal: FEED Study



Hydrogen Economics

End Goal: Reaching a Final Investment Decision 
(aka FID)

How to Make an FID: 

▪ Conduct a FEED/Pre-Feasibility Study: Check if design and economics make 
sense.

     If Economics and Design           = FID (+) ive – Go ahead with proposed project

     If Economics and Design           = FID (-) ive – Back to the drawing board
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End Goal: Reaching a Positive Final Investment Decision

What makes a Positive FID:

- Prefeasibility Study: Estimates show capital can be raised and return on investment is 
achievable 

- FEED: Results show that the project is technically feasible, socially acceptable and 

environmentally safe with the project equipment and facility deliverable within available 

capital limits. 

Hydrogen Economics
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Challenges

Hydrogen Economics

• The cost of low impact H2 is still significantly high (2 x 3 times higher than fossil fuels).

• Of the US$320 billion worth of committed hydrogen projects only 10% have reached FID.

• The cost of hydrogen production is decreasing as the cost of electrolyser systems and 
renewable energy pricing are undergoing a decrease

• There is growing support from governments and industry to incentives and bridge the cost gap 
to spearhead the development of a hydrogen economy.

• In light of these factors cost of H2 is likely to reach parity with A$2/kg target by 2030.

The Way Forward
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Hydrogen Economics

Motivation for Open-Source Modelling

• The infancy of the market – there is a lack of comprehensive tools and transparency.

• Data drives the results – the variables are subjective and will vary from context to context.

• Tools can assist in benchmarking the cost and performance parameters required to achieve project 

parity.

• Iterative platform to build on – new and emerging technologies can be added 
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Hydrogen Economics

Open-Source Modelling
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Hydrogen Economics

H2 Modelling and Costing

Reference: https://www.nature.com/articles/s43247-022-00640-1 

https://www.nature.com/articles/s43247-022-00640-1
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Hydrogen Economics

Ammonia Modelling and Costing

Reference: https://www.sciencedirect.com/science/article/pii/S0196890422011918  

https://www.sciencedirect.com/science/article/pii/S0196890422011918
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Hydrogen Economics

Methanol Modelling and Costing

Reference: https://www.sciencedirect.com/science/article/pii/S0360319923019560 

https://www.sciencedirect.com/science/article/pii/S0360319923019560
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Hydrogen Economics

Hydrogen Export Costing

Reference: https://www.sciencedirect.com/science/article/pii/S0360319922017281 

https://www.sciencedirect.com/science/article/pii/S0360319922017281
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Hydrogen Economics

Impact
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